Abstract
Organic thermoelectric materials have been gaining increasing interest due to their capacity to convert waste heat into electricity. This study explores the impact of doping-induced charge transfer states on the thermoelectric properties of benzodithiophene-thieno[3,2-b]thiophene-based polymers (PBDTTT) doped with 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). Detailed structural, optical, and electrical analyses were conducted on two specific polymers, PBDTTT:C (P1) and PBDTTT:EFT (P2). The investigation revealed distinct doping behaviors: P1 formed a partial charge transfer (PCT) complex, whereas P2 predominantly formed an integer charge transfer (ICT) complex. This distinction is attributed to the inherent structural differences and varying aggregation capabilities of the polymers. As a result, P2 exhibited enhanced electrical conductivity and a superior thermoelectric power factor compared to P1. This study emphasizes the critical role of polymer aggregation and charge-transfer mechanisms in optimizing the thermoelectric performance of conjugated polymers. It offers valuable insights for the development of efficient thermoelectric materials and the advancement of energy conversion technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.