Abstract
The single-component Mollerup model, with over 40 direct applications and 442 citations, is the most widely used activity model for chromatographic mechanistic modeling. Many researchers have extended this formula to multi-component systems by directly adding subscripts, a modification deemed thermodynamically inconsistent (referred to as the reference model). In this work, we rederived the asymmetric activity model for multi-component systems, using the van der Waals equation of state, and termed it the multi-component Mollerup model. In contrast to the reference model, our proposed model accounts for the contributions of all components to the activity. Three numerical experiments were performed to investigate the impact of the three different activity models on the chromatographic modeling. The results indicate that our proposed model represents a thermodynamically consistent generalization of the single-component Mollerup model to multi-component systems. This communication advocates adopting of the multi-component Mollerup model for activity modeling in multi-component chromatographic separation to enhance thermodynamic consistency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.