Abstract

Energy-efficient switching of nanoscale magnets requires application of a time-varying magnetic field characterized by microwave frequency. At finite temperatures, even weak thermal fluctuations induce perturbations in the magnetization that can accumulate in time, disrupt the phase locking between the magnetization and the applied field, and eventually compromise magnetization switching. It is demonstrated here that the magnetization reversal is mostly disturbed by unstable perturbations arising in a certain domain of the configuration space of a nanomagnet. The instabilities can be suppressed and the probability of magnetization switching enhanced by applying an additional stimulus such as a weak longitudinal magnetic field that ensures bounded dynamics of the perturbations. Application of the stabilizing longitudinal field to a uniaxial nanomagnet makes it possible to reach a desired probability of magnetization switching even at elevated temperatures. The principle of suppressing instabilities provides a general approach to enhancing thermal stability of magnetization dynamics. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.