Abstract

A major limitation of the three-dimensional imaging of polymeric biochromatography particle packings using X-ray computed tomography is that the particles have a low density and a high porosity, making them almost undistinguishable from the surrounding liquid phase. Additionally, the employed media are typically composed of materials with low atomic numbers, which exhibit low X-ray absorption. We report an improvement of packed column reconstruction using micro X-ray computed tomography. A simple, inexpensive, and fast method to increase the contrast factor of highly porous polymer-based chromatographic particles was developed by applying a modified pore-blocking method. This approach relies on the selective filling of the porous chromatographic particles with a hydrophilic phase while a hydrophobic phase occupies the void spaces between the particles. The hydrophilic phase contains a dissolved X-ray absorbing radiocontrast agent. No chemical modifications of the chromatographic beads or columns were necessary. The developed method can be applied in-situ in a previously packed column and can be used for media with different organic backbones. We show the applicability of this method by carrying out the first 3D-reconstruction of packed micro columns with an inner diameter of 760 μm. The micro column contained agarose- and methacrylate-based particles commonly used in preparative biochromatography with mean diameters of 40 and 65 μm, respectively. Based on the obtained high-resolution 3D-reconstructions, we exemplarily computed packing properties such as global extraparticle porosity and radial porosity profiles, and visualized the presence of void spaces using 3D image analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.