Abstract

We report the synthesis of carbon coated and sulfur doped titania nanoparticles using a continuous, single-step laser pyrolysis technique. We employed air as oxidant and C2H4 as laser energy transfer agent (sensitizer)/carbon donor, both carrying the TiCl4 vapors as a titania precursor. The volatile (CH3)2S2 was used to introduce sulfur as dopant in the nanopowders. The incorporation of C and S atoms in nanopowders with anatase dominant phase and with average particle diameter between 18 and 25nm was performed through the addition of S2(CH3)2 and C2H4 to the reactive precursor mixtures. The samples were characterized by: EDX, XRD, TEM, XPS and UV–Vis spectroscopy. By the introduction of the sulfur precursor, the anatase-to-rutile ratio within the resulted TiO2-based nanoparticles decreased, as well as their bandgap energy values which are also lower than those of commercial TiO2 Degussa P25.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.