Abstract

We present a method of constructing composites composed of conjugated polyelectrolytes (CPEs) and single-walled carbon nanotubes (SWCNTs) to obtain a high-performing flexible thermoelectric generator. In this approach, three kinds of polymers, namely, poly[(1,4-(2,5-didodecyloxybenzene)-alt-2,5-thiophene] (P1), poly[(1,4-(2,5-bis-sodium butoxysulfonate-phenylene)-alt-2,5-thiophene] (P2), and poly[(1,4-(2,5-bis-acid butoxysulfonic-phenylene)-alt-2,5-thiophene] (P3) are designed, synthesized and complexed with SWCNTs as thermoelectric composites. The electrical conductivities of the CPEs/SWCNTs (P2/SWCNTs, and P3/SWCNTs) nanocomposites are much higher than those of non-CPEs/SWCNTs (P1/SWCNTs) nanocomposites. Among them, the electrical conductivity of P2/SWCNTs with a ratio of 1:4 reaches 3686 S⋅cm−1, which is 12.4 times that of P1/SWCNTs at the same SWCNT mass ratio. Moreover, CPEs/SWCNTs composites (P2/SWCNTs) display remarkably improved thermoelectric properties with the highest power factor (PF) of 163 μW⋅m−1 ⋅ K−2. In addition, a thermoelectric generator is fabricated with P2/SWCNTs composite films, and the output power and power density of this generator reach 1.37 μW and 1.4 W⋅m−2 (cross-section) at Δ T = 70 K. This result is over three times that of the thermoelectric generator composed of non-CPEs/SWCNTs composite films (P1/SWCNTs, 0.37 μW). The remarkably improved electrical conductivities and thermoelectric properties of the CPEs/SWCNTs composites (P2/SWCNTs) are attributed to the enhanced interaction. This method for constructing CPEs/SWCNTs composites can be applied to produce thermoelectric materials and devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.