Abstract

The surface measures of machined titanium alloys as dental materials can be enhanced by adopting a decision-making algorithm in the machining process. The surface quality is normally characterized by more than one quality parameter. Hence, it is very important to establish multi-criteria decision making to compute the optimal process factors. In the present study, Taguchi–Grey analysis-based criteria decision making has been applied to the input process factors in the wire EDM (electric discharge machining) process. The recast layer thickness, wire wear ratio and micro hardness have been chosen to evaluate the quality measures. It was found that the wire electrode selection was the most influential factor on the quality measures in the WEDM process, due to its significance in creating spark energy. The optimal arrangement of the input process parameters has been found using the proposed approach as gap voltage (70 V), discharge current (15 A) and duty factor (0.6). It was proved that the proposed method can enhance the efficacy of the process. Utilizing the computed combination of optimal process parameters in surface quality analysis has significantly contributed to improving the quality of machining surface.

Highlights

  • Due to its unique physical properties such as higher corrosion resistance and considerable strength, titanium (α-β) alloy (Ti-6Al-4V) is employed in synthesizing dental specimens [1]

  • It has been found that the proposed method can significantly improve quality measures [12]

  • The surface caused by the wire electrodes can be clearly the machined surface assurface shownasinshown patterns caused by the wire electrodes can beviewed clearlyinviewed in the machined

Read more

Summary

Introduction

Due to its unique physical properties such as higher corrosion resistance and considerable strength, titanium (α-β) alloy (Ti-6Al-4V) is employed in synthesizing dental specimens [1]. As a dental implant material, titanium alloy must possess an adequate surface quality, free from residual stress. Titanium alloy as dental material should have an optimal surface finish through the machining process. The conventional machining method produces higher residual stress due to vibrations made during the process [2]. The LBM and hybrid machining processes produce a high heat affected zone (HZ) on the machined specimens [3]. The improper selection of laser power results in affecting the machining performance of titanium alloy in the LBM process [4]. The AWJM process causes the titanium alloy specimens to considerably taper [5]. The ECM process may result in Materials 2020, 13, 1440; doi:10.3390/ma13061440 www.mdpi.com/journal/materials

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.