Abstract

Abstract Magnesium oxide immobilized polystyrene (PS/MgO) was prepared by the thermal attachment method for the removal of U(VI) from aqueous solutions. PS/MgO was characterized by different techniques [scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD)]. The effects of pH, adsorbent amount, contact time, initial U(VI) concentration, temperature and co-existing cations on the removal process were investigated by using batch technique. The results showed that the maximum adsorption capacity was 163 (mg g−1) at pH 6 and 293 K. The adsorption kinetics of U(VI) onto PS/MgO followed pseudo-second order and intra-particle kinetic models. The adsorption isotherms obeyed the Freundlich isotherm model. The thermodynamic parameters show that the process is endothermic and spontaneous. PS/MgO is an attractive adsorbent for U(VI) removal from aqueous solutions due to its accessibility, low preparation cost and high removal capacity

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.