Abstract
The availability of multichannel neuroimaging techniques, such as MEG and EEG, provides us with detailed topographical information of the recorded magnetic and electric signals and therefore gives us a good overview on the concomitant signals generated in the brain. To assess the location and the temporal dynamics of neuronal sources with noninvasive recordings, reconstruction tools such as beamformers have been shown to be useful. In the current study, we are in particular interested in cortical motor control involved in the isometric contraction of finger muscles. To this end we are measuring the interaction between the dynamics of brain signals and the electrical activity of hand muscles. We were interested to find out whether in addition to the well-known correlated activity between contralateral primary motor cortex and the hand muscles, additional functional connections can be demonstrated. We adopted coherence as a functional index and propose a so-called nulling beamformer method which is computationally efficient and addresses the localization of multiple correlated sources. In simulations of cortico-motor coherence, the proposed method was able to correctly localize secondary sources. The application of the approach on real electromyographic and magnetoencephalographic data collected during an isometric contraction and rest revealed an additional activity in the hemisphere ipsilateral to the hand involved in the task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Mathematical Methods in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.