Abstract

Wire-based direct energy deposition (W-DED) techniques in metal additive manufacturing allow part-fabrication at higher deposition rates and lower costs. Given the lack of any support mechanism, these processes face challenges in fabricating overhanging features. The inherent overhang capability of weld-beads and higher-order kinematics can help realize certain complex geometries. However, significant challenges like non-uniform slicing, constrained deposition-torch accessibility, etc., limit the efficacy of these approaches. The present work describes a deformation-aided deposition process designed to overcome some of these limitations and to manufacture complex metallic components. It is based on a sequential combination of deposition and bending processes: a shape fabricated through W-DED deposition is bent to form the required shape. The cycle of deposition and bending is repeated until the final desired geometry is realized. The anisotropic and deterministic behaviors of the deposited components are analyzed in terms of springback and the punch force. Finally, the benefit of current hybrid process is demonstrated through a few illustrative geometries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.