Abstract
(SBM), which is an effective technique for computing term weights based on co-occurrence patterns, employing the information about the proximity among query terms in documents. The intuition that semantically related term occurrences often occur closer to each other is taken into consideration, leading to a new information retrieval model called proximity set-based model (PSBM). The novelty is that the proximity information is used as a pruning strategy to determine only related co-occurrence term patterns. This technique is time efficient and yet yields nice improvements in retrieval effectiveness. Experimental results show that PSBM improves the average precision of the answer set for all four collections evaluated. For the CFC collection, PSBM leads to a gain relative to the standard vector space model (VSM), of 23% in average precision values and 55% in average precision for the top 10 documents. PSBM is also competitive in terms of computational performance, reducing the execution time of the SBM in 21% for the CISI collection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.