Abstract

We present a field modulation technique that increases the operating frequency of magnetoelectric (ME) sensors so that it can match the mechanical resonance frequency of the sensor. This not only improves the sensitivity but also reduces the effect of 1/f noise that is inherent at low frequencies. The technique, which is shown to apply to both symmetric and asymmetric ME sensors, relies on the strong, nonlinear magnetic field dependence of the magnetostriction. The combination of a lower 1/f noise and enhanced response at resonance has increased the signal to noise ratio of a symmetric sensor by two orders of magnitude. The detection limit of this sensor was lowered from 90 to 7 pT/Hz at 1 Hz in a magnetically unshielded environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.