Abstract

Flammable gas sensors are essential in occupational health and safety to prevent fire or explosion in gas facilities and underground mining. Our early study demonstrated that ionic liquid (IL)/quartz crystal microbalance (QCM) gas sensors and sensor arrays were excellent for the detection of various organic vapors at both room temperature and elevated temperatures. In this paper, we developed a general method that significantly enhanced the sensitivity of the IL/QCM sensors for flammable gases detection by immobilizing IL on a conductive polymer polyaniline (PAn) template. Studies were performed to optimize the PAn oxidation states, thickness, and IL concentrations. Results showed that the sensitivity increased with increasing the PAn film thickness and the amount of IL immobilized within the PAn film. The sensitivity depended also on the oxidation state and doping state of PAn. With doped and partially oxidized PAn (emeraldine salt) the IL/QCM sensor showed the best performance. The current detection limit for methane was as low as about 115 ppm at room temperature. The sensitivity also depended on the structure of the IL used. Among the four ILs tested, two of them showed excellent sensitivities after being immobilized in the PAn film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.