Abstract
True randomness is necessary for the security of any cryptographic protocol, including quantum key distribution (QKD). In QKD transceivers, randomness is supplied by one or more local, private entropy sources of quantum origin which can be either passive (e.g., a beam splitter) or active (e.g., an electronic quantum random number generator). In order to better understand the role of randomness in QKD, I revisit the well-known "detector blinding" attack on the BB84 QKD protocol, which utilizes strong light to achieve undetectable and complete recovery of the secret key. I present two findings. First, I show that the detector-blinding attack was in fact an attack on the receiver's local entropy source. Second, based on this insight, I propose a modified receiver station and a statistical criterion which together enable the robust detection of any bright-light attack and thus restore security.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.