Abstract

Abstract In order to enhance the secrecy performance of the spatial modulation (SM) aided visible light communication (VLC) system, an optical jamming aided secrecy enhancement scheme is proposed in this paper, in which transmitter (Alice) sends the optical jamming signals and the confidential signal simultaneously with amplitude and power constraints, wherein the truncated Gaussian distribution is adopted by the optical jamming signals for the considered constraints. Additionally, with finite discrete support set of the channel inputs’ distribution, the corresponding secrecy performance is systematically analyzed for the optical jamming aided SM-VLC system, which includes the average mutual information (AMI), the lower bound on AMI and its closed-form expression approximation and the achievable secrecy rate. Furthermore, the power allocation problem for the proposed SM-VLC systems with optical jamming is considered. Finally, extensive simulation results are presented to validate our analytical results and the secrecy versus bit error ratio (BER) trade-off is characterized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.