Abstract

Academic and industrial communities have been paying significant attention to the 6th Generation (6G) wireless communication systems after the commercial deployment of 5G cellular communications. Among the emerging technologies, Vehicular Edge Computing (VEC) can provide essential assurance for the robustness of Artificial Intelligence (AI) algorithms to be used in the 6G systems. Therefore, in this paper, a strategy for enhancing the robustness of AI model deployment using 6G-VEC is proposed, taking the object detection task as an example. This strategy includes two stages: model stabilization and model adaptation. In the former, the state-of-the-art methods are appended to the model to improve its robustness. In the latter, two targeted compression methods are implemented, namely model parameter pruning and knowledge distillation, which result in a trade-off between model performance and runtime resources. Numerical results indicate that the proposed strategy can be smoothly deployed in the onboard edge terminals, where the introduced trade-off outperforms the other strategies available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.