Abstract

Quantum entanglement and Einstein–Podolsky–Rosen (EPR) steering are valuable resources in quantum information processing. How to enhance the quantum entanglement and EPR steering of coupled optomechanical systems with a weak squeezed vacuum field is studied when the displacement of detuning induced by the mechanical mode is considered. Compared with the condition that the system interacts with a vacuum environment, the quantum entanglement and EPR steering are stronger when the squeezed vacuum field is applied. A squeezed vacuum field with a large degree is not beneficial to enhance the quantum entanglement and EPR steering. Rather than the squeezing parameter of the squeezed vacuum field, the reference phase plays a vital role in this model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.