Abstract

Hybrid hollow polymeric microspheres (HPMSs) are synthesized by encapsulating the supramolecular vesicles with polyphosphazene through a rapid one-step polycondensation reaction. Subsequent carbonization treatments of the HPMSs lead to corresponding hollow carbon microspheres (HCMSs) with well-preserved geometry. The sizes of HPMSs and HCMSs are controlled by the vesicles, which is directly determined by the feeding ratio of the assembly units. Electrodes based on HCMSs showed a specific capacitance of 314.6 F/g at a current density of 0.2 A/g in 6 M KOH electrolyte, 180.0 F/g at a current density of 30 A/g, and high stability of 98.2% of capacity retention after 2000 cycles. Both the high surface area and high heteroatoms level of HCMSs contribute to the excellent capacitive performance. Meanwhile, the hollow carbon structure ensured the satisfactory capacitive performance by increasing utilization efficiency of the surface area as well as achieving short diffusion paths for electrolyte ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.