Abstract
We report a method for preparing highly photoluminescent, water-soluble CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots (QDs) colloidally stabilized by double hydrophilic copolymers. The polymers, either a diblock copolymer poly(ethylene glycol-b-2-N,N-dimethylaminoethyl methacrylate) (PEG-b-PDMA) or a statistical copolymer poly(oligoethylene glycol methacrylate-co-2-N,N-dimethylaminoethyl methacrylate) (POEG-co-PDMA), were able to replace the hexadecylamine (HDA) or trioctylphosphine oxide (TOPO) ligands on the surface of the as-synthesized QDs and impart water-solubility and colloidal stability to the QD nanocrystals. In water, the [CdSe/ZnS]/POEG-co-PDMA colloids were present in the form of aggregates with a mean apparent hydrodynamic radius Rh of 54 nm and a narrow size distribution. Although the photoluminescence (PL) quantum yield (QY) of the polymer-treated QDs decreased upon transfer from an organic medium to water, much of this loss in brightness could be restored by the addition to the solution of an excess of a water-soluble primary amine such as 3-amino-propanol (APP). This chemical-activation strategy of adding primary amines as PL activators to polymer-stabilized QDs did not lead to a spectral shift of either the absorption or emission of the QDs in water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.