Abstract
The performance and stability of perovskite solar cells rely crucially on the purity of their active perovskite phase. While the two‐step method has emerged as a well‐known technique for fabricating high‐performance cells, it suffers from significant PbI2 phase impurities at the buried layer due to inefficient diffusion of cationic molecules into the preprepared PbI2 layer. Herein, a simple yet highly effective method is presented to boost phase purity within the buried layer by introducing formamidinium iodide (FAI) seed molecules into the underlying PbI2 layer. X‐Ray diffraction analysis result reveals that this process significantly reduces the PbI2 phase and enhances the purity of the perovskite's phase. It is also observed that this technique can produce perovskite layer with a remarkably smooth surface structure and large interconnected crystal grains, forming a continuous layer. These characteristics are subjected to further enhancement when hexamethylenetetramine molecules are concurrently introduced with FAI into the PbI2 layer. Solar cells fabricated using this method, with an active area of 0.1 cm2, achieve a remarkable power conversion efficiency of up to 24.52% with Voc as high as 1.18 V, representing a substantial improvement over cells produced using the standard two‐step method, which attains only 22.18% efficiency. With its simple yet impactful approach, the present method should find widespread adoption in the production of high‐performance perovskite solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.