Abstract

A large coercivity and anisotropy enhancement in perpendicular NdDyFeB (120 nm)/Dy (tDy) films has been realized by a Dy grain-boundary diffusion process. The coercivity HC and the ratio Mr/Ms reach their maxima at tDy = 50 nm, and the magnetic domain sizes increase with increasing tDy. The HC and Mr/Ms increasing with tDy is due to the enhancement of the anisotropy of (Nd,Dy)2Fe14B grains by Dy substitution for Nd. The coercivity mechanism is a nucleation-type mechanism. Dy and Nd elements coexist at grain boundaries, forming a (Nd,Dy)-rich phase, which may promote the nucleation of reversal domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.