Abstract

Catalase–peroxidase (KatG) enzymes use a peroxidase active site to facilitate robust catalase activity, an ability all other members of its superfamily lack. KatG's have a Met-Tyr-Trp covalent adduct that is essential for catalatic but not peroxidatic turnover. The tyrosine (Y226 in E. coli KatG) is supplied by a large loop (LL1) that is absent from all other plant peroxidases. Elimination of Y226 from the KatG structure, either by site directed mutagenesis (i.e., Y226F KatG) or by deletion of larger portions of LL1 invariably eliminates catalase activity, but deletion variants were substantially more active as peroxidases, up to an order of magnitude. Moreover, the deletion variants were more resistant to H2O2-dependent inactivation than Y226F KatG. Stopped-flow evaluation of reactions of H2O2 with Y226F KatG and the most peroxidase active deletion variant (KatG[Δ209–228]) produced highly similar rate constants for formation of compounds I and II, and about a four-fold faster formation of compound III for the deletion variant as opposed to Y226F. Conversely, single turnover experiments showed a 60-fold slower return of Y226F KatG to its ferric state in the presence of the exogenous electron donor 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) than was determined for KatG(Δ209–228). Our data suggest that the peroxidatic output of KatG cannot be optimized simply by elimination of catalase activity alone, but also requires modifications that increase electron transfer between exogenous electron donors and the heme prosthetic group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.