Abstract

Doctors, nowadays, primarily use auditory-perceptual evaluation, such as the grade, roughness, breathiness, asthenia, and strain scale, to evaluate voice quality and determine the treatment. However, the results predicted by individual physicians often differ, because of subjective perceptions, and diagnosis time interval, if the patient's symptoms are hard to judge. Therefore, an accurate computerized pathological voice quality assessment system will improve the quality of assessment. This study proposes a self_attention-based system, with a deep learning technology, named self_attention-based bidirectional long-short term memory (SA BiLSTM). Different pitches [low, normal, high], and vowels [/a/, /i/, /u/], were added into the proposed model, to make it learn how professional doctors evaluate the grade, roughness, breathiness, asthenia, and strain scale, in a high dimension view. The experimental results showed that the proposed system provided higher performance than the baseline system. More specifically, the macro average of the F1 score, presented as decimal, was used to compare the accuracy of classification. The (G, R, and B) of the proposed system were (0.768±0.011, 0.820±0.009, and 0.815±0.009), which is higher than the baseline systems: deep neural network (0.395±0.010, 0.312±0.019, 0.321±0.014) and convolution neural network (0.421±0.052, 0.306±0.043, 0.3250±0.032) respectively. The proposed system, with SA BiLSTM, pitches, and vowels, provides a more accurate way to evaluate the voice. This will be helpful for clinical voice evaluations and will improve patients' benefits from voice therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.