Abstract

AbstractIn the current study, to obtain environmentally friendly printed cotton fabrics with a clear contour edge, ethylene glycol diglycidyl ether (EGDE) as a crosslinking agent and guar gum as a thickener were used with natural madder dye. The solid content of the thickener was assessed to determine the optimal viscosity of the printing paste. Scanning electron microscopy images and colour depth (K/S) values were used to analyse the surface morphology and printing properties. The pattern outline of the printed cotton fabric was assessed with an optical microscope. Also, the overall fastness properties of the printed fabrics were evaluated. The results showed that when the solid content of guar gum was 2.5%, the viscosity of the printing paste was close to 10 000 mPa.s, which was suitable for printing cotton fabrics. Scanning electron microscopy analysis showed that most of the printing paste was removed during the washing process, and did not affect the microstructure of the cotton fabric. Compared with direct printed cotton fabrics, the K/S values of mordant and crosslinked printed cotton fabrics increased by 3.12 and 4.01, respectively. In the optical microscopy photographs, the mordant and crosslinked printed cotton fabrics displayed a clear outline sharpness of the printed pattern, and excellent printed products were obtained. The colour fastness to washing, rubbing and light of the crosslinked printed cotton fabric were significantly improved, reaching levels of 4‐5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.