Abstract

III–V compound nanowires have electrical and optical properties suitable for a wide range of applications, including photovoltaics and photodetectors. Furthermore, their elastic nature allows the use of strain engineering to enhance their performance. Here we have investigated the effect of mechanical strain on the photocurrent and the electrical properties of single GaAs nanowires with radial p-i-n junctions, using a nanoprobing setup. A uniaxial tensile strain of 3% resulted in an increase in photocurrent by more than a factor of 4 during NIR illumination. This effect is attributed to a decrease of 0.2 eV in nanowire bandgap energy, revealed by analysis of the current–voltage characteristics as a function of strain. This analysis also shows how other properties are affected by the strain, including the nanowire resistance. Furthermore, electron-beam-induced current maps show that the charge collection efficiency within the nanowire is unaffected by strain measured up to 0.9%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.