Abstract

New electrocatalysts with high reduction efficiency are needed to upgrade the mediated electrochemical reduction for real applications. In addition, automation is required to quantify active electrocatalysts in alkaline media and air pollution. In this study, N2O was removed sustainably by electrogenerated low valent nickel(I) phthalocyanine tetrasulfonate [Ni(I)TSPc] in 1 M KOH using an electroscrubbing system. Ni(I)TSPc electro generation and N2O removal were automated by two (liquid/gas) electrochemical flow sensors, respectively. The Ni(I)TSPc was generated electrochemically up to 95% in 1 M KOH, and high removal efficiency (100%) was observed for 5 ppm N2O and 90% for 10 ppm N2O. A limiting potential change in the in-situ LSV of the chemically synthesized Ni(I)TSPc was taken and derived from the calibration plot and validated by an ex-situ potentiometric titration using an oxygen reduction potential electrode. Using the obtained calibration plot, electrogenerated Ni(I)TSPc allowed a direct determination in a liquid flow cell. The gas flow sensor developed using a KOH/Ni(II)CN4 (TCN (II))-fabricated silver solid amalgam electrode showed an excellent response to N2O concentrations up to 32 ppm. A calibration plot with known concentration was derived and validated by gas chromatography. The response time and sensitivity obtained were approximately 500s and −0.012 mA ppm−1 cm−2, respectively. The sensor stability test confirmed its good stability. Finally, the developed in-situ electrochemical flow sensors were applied to the sustainable automation of N2O pollutant removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call