Abstract
We investigate how the ability of the vortex oscillation mode of a spin-torque nano-oscillator to lock to an external microwave signal is modified when it is coupled to another oscillator. We show experimentally that the mutual electrical coupling can lead to locking range enhancements of a factor 1.64. Furthermore, we analyze the evolution of the locking range as a function of the coupling strength through experiments and numerical simulations. By uncovering the mechanisms at stake in the locking range enhancement, our results will be useful for designing spin-torque nano-oscillator arrays with high sensitivities to external microwave stimuli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.