Abstract

Recently, sodium-ion batteries (SIBs) have received considerable attention for large-scale energy storage applications. However, the low initial Coulombic efficiency of traditional SIBs severely impedes their further development. Here, a highly active Na2 S-based composite is employed as a self-sacrificial additive for sodium compensation in SIBs. The in situ synthesized Na2 S is wrapped in a carbon matrix with nanoscale particle size and good electrical conductivity, which helps it to achieve a significantly enhanced electrochemical activity as compare to commercial Na2 S. As a highly efficient presodiation additive, the proposed Na2 S/C composite can reach an initial charge capacity of 407mAhg-1 . When 10wt.% Na2 S/C additive is dispersed in the Na3 V2 (PO4 )3 cathode, and combined with a hard carbon anode, the full cell achieves 24.3% higher first discharge capacity, which corresponds to a 18.3% increase in the energy density from 117.2 to 138.6Whkg-1 . Meanwhile, it is found that the Na2 S additive does not generate additional gas during the initial charging process, and under an appropriate content, its reaction product has no adverse impact on the cycling stability and rate performance of SIBs. Overall, this work establishes Na2 S as a highly effective additive for the construction of advanced high-energy-density SIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call