Abstract

The distribution of hydrophobic solutes, such as methane, enclosed in a nanosized water droplet contained in a reverse micelle of diameter 2.82 nm is investigated using Monte Carlo simulations. The effect of the hydrophobic solute's atomic diameter on the solute-solute potential of mean force is also studied. The study reveals that confinement has a strong influence on the solute's tendency to associate. The potential of mean force exhibits only a single minimum, indicating that the contact pair is the only stable configuration between solutes. The solvent-separated pair that is universally observed for small solutes in bulk water is conspicuously absent. This enhanced hydrophobic effect is attributed to the lack of sufficient water to completely hydrate and stabilize the solvent-separated configurations. The study is expected to be important in understanding the role of hydrophobic forces during protein folding and nucleation under confinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.