Abstract

Mn-doped TiO2 materials synthetized by the sol–gel method were obtained and tested in the photocatalytic hydrogen production from a methanol–water solution. The Mn amount was varied between 1.0–10.0%wt. Powder X-ray diffraction patterns and Raman spectra of the synthesized solids showed the anatase as the predominant crystalline phase. A high specific surface area was found in the Mn-doped sol–gel catalysts between 88–136m2/g while in bare TiO2 sample 64m2/g only. Mn-doped TiO2 solids evaluated in the production of H2 showed higher photoactivities (1376μmolh−1g−1 for 1.0%wt. Mn and 1736μmolh−1g−1 for 5.0%wt. Mn) in comparison with the bare TiO2 semiconductor (264μmolh−1g−1). This improvement in photoactivity is suggested as a combination of charge separators Mn2+, Mn3+ and Mn4+ which can act simultaneously as electron and hole traps respectively. The synergetic effect between the manganese oxidation states and electrons transferred from methanol toward TiO2 particles favored the H2 production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.