Abstract

Several soil stabilization techniques have been adopted to favorably modify the geotechnical properties like hydraulic conductivity, strength, and compressibility of soil. In this study, xanthan gum (XG), an anionic bacterial extracellular polysaccharide is used to modify the geotechnical properties of the soil, particularly its strength and hydraulic conductivity. The addition of xanthan gum to soil improves its strength and stiffness and also decreases its hydraulic conductivity. The addition of xanthan gum induces polymer cross-linking, forms interconnected network of hydrogels in the voids of the soil matrix and causes preferential adsorption of the biopolymer molecules and cations on the soil surface. These interactions between the soil and the biopolymer alter the geotechnical properties of the treated soil matrix favorably. The decrease in permeability is nearly 1000 times with a small addition of 0.25% xanthan gum to the soil. Xanthan gum tends to aggregate the particles at lower concentration and at higher concentrations forms more viscous hydrogels that fill the pore spaces and clogs the pores. Strength also shows a similar increase and hence xanthan gum can be recommended for soil stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.