Abstract

A spatial channel network (SCN) was recently proposed toward the forthcoming spatial division multiplexing (SDM) era, in which the optical layer is explicitly evolved to the hierarchical SDM and wavelength division multiplexing layers, and an optical node is decoupled into a spatial cross-connect (SXC) and wavelength cross-connect to achieve an ultrahigh-capacity optical network in a highly economical manner. In this paper, we report feasibility demonstrations of an evolution scenario regarding the SCN architecture to enhance the flexibility and functionality of spatial channel networking from a simple fixed-core-access and directional spatial channel ring network to a multidegree, any-core-access, nondirectional, and core-contentionless mesh SCN. As key building blocks of SXCs, we introduce what we believe to be novel optical devices: a 1 × 2 multicore fiber (MCF) splitter, a core selector (CS), and a core and port selector (CPS). We construct free-space optics-based prototypes of these devices using five-core MCFs. Detailed performance evaluations of the prototypes in terms of the insertion loss (IL), polarization-dependent loss (PDL), and intercore cross talk (XT) are conducted. The results show that the prototypes provide satisfactorily low levels of IL, PDL, and XT. We construct a wide variety of reconfigurable spatial add/drop multiplexers (RSADMs) and SXCs in terms of node degree, interport cross-connection architecture, and add/drop port connectivity flexibilities. Such RSADMs/SXCs include a fixed-core-access and directional RSADM using a 1 × 2 MCF splitter; an any-core-access, nondirectional SXC with core-contention using a CS; and an any-core-access, nondirectional SXC without core-contention using a CPS. Bit error rate performance measurements for SDM signals that traverse the RSADMs/SXCs confirm that there is no or a very slight optical signal-to-noise-ratio penalty from back-to-back performance. We also experimentally show that the flexibilities in the add/drop port of the SXCs allow us to recover from a single or concurrent double link failure with a wide variety of options in terms of availability and cost-effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.