Abstract

DNA mimic foldamers based on aromatic oligoamide helices bearing anionic phosphonate side chains have been shown to bind to DNA-binding proteins sometimes orders of magnitude better than DNA itself. Here, we introduce new features in the DNA mimic foldamers to facilitate structural investigations of their interactions with proteins. Thirteen new foldamer sequences have been synthesized and characterized using NMR, circular dichroism, molecular modeling, and X-ray crystallography. The results show that foldamer helix handedness can be quantitatively biased by means of a single stereogenic center, that the foldamer structure can be made C2-symmetrical as in palindromic B-DNA sequences, and that associations between foldamer helices can be promoted utilizing dedicated C-terminal residues that act as sticky ends in B-DNA structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.