Abstract

This study presents an innovative approach to enhancing weld line strength in advanced polymer injection molding through applying gas-assisted mold temperature control, significantly increasing mold temperature beyond typical values observed in conventional processes. We investigate the effects of various heating times and frequencies on the fatigue strength of Polypropylene (PP) samples and the tensile strength of Acrylonitrile Butadiene Styrene (ABS) composite samples at different Thermoplastic Polyurethane (TPU) percentages and heating times. Using gas-assisted mold heating, mold temperatures exceeding 210 °C are achieved, which represents a significant advancement compared to the standard mold temperatures of less than 100 °C. As a result, the fatigue strength of the PP sample with mold heating at 15 s shows a remarkable increase of up to 5.4 times at 5 Hz compared to the sample without mold temperature control. Moreover, ABS/TPU blends with 15 wt.% TPU exhibit the highest ultimate tensile strength (UTS) value of 36.8 MPa, while blends with 30 wt.% TPU have the lowest UTS value of 21.3 MPa. This advancement demonstrates the potential for improved welding line bonding and fatigue strength in manufacturing. Our findings reveal that increasing the mold temperature before injection results in higher fatigue strength in the weld line, with the TPU percentage having a more significant influence on the mechanical properties of ABS/TPU blends than heating time. The results of this study contribute to a deeper understanding of advanced polymer injection molding and offer valuable insights for process optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call