Abstract

Catalytic hydrothermal treatment is considered one of the most promising technologies for recovering energy from carbonaceous wastes. In so doing, it facilitates the realization of waste-to-energy and resource utilization efforts. In this study, hydrochar was prepared from food waste digestate and wood waste via catalytic co-hydrothermal treatment using potassium carbonate (K<sub>2</sub>CO<sub>3</sub>) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>) as alkali catalysts. Based on the physicochemical properties of hydrochar, including proximate analysis, element distribution, high heating value (HHV), surface functional groups, and morphology, the gaseous products of pyrolysis and the combustion performance of hydrochar were further investigated using TG-FTIR-MS and TG-DSC, respectively. In addition, the hydrochar combustion kinetics and thermodynamics were probed. Specifically, the hydrochar obtained from Na<sub>2</sub>CO<sub>3</sub> catalysis (HC-Na) demonstrated a higher heating value (26.85 MJ·kg<sup>−1</sup>) with higher calcium retention, while the hydrochar obtained from K<sub>2</sub>CO<sub>3</sub> catalysis (HC-K) had a greater number of functional groups and larger carbon content. Moreover, the pyrolysis gaseous products of hydrochar were rich in hydrocarbons. HC-K exhibited better comprehensive combustion performance with the activation energy (Ea) values of 79.32 kJ·mol<sup>−1</sup> and 67.91 kJ·mol<sup>−1</sup> using the Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose methods, respectively. These results provide a prospect for enhancing the comprehensive utilization of carbonaceous solid waste through catalytic co-hydrothermal treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.