Abstract

The propagation of left-hand (LH-) and right-hand (RH-) circularly polarized (CP) lasers and the accompanying generation of fast electrons in a magnetized cone-target with pre-formed plasmas are investigated. In this work, the strength of external magnetic field is comparable to that of the incident laser. Theoretical analyses indicate that the cut-off density of LH-CP laser is larger than that without an external magnetic field. When the external magnetic field normalized by the laser magnetic field is larger than the relativistic factor, the RH-CP laser will keep on propagating till the laser energy is depleted. The theoretical predictions are confirmed by two-dimensional particle-in-cell simulations. Simulation results show that in the presence of external longitudinal magnetic field, the energies and yields of fast electrons are greatly enhanced for RH-CP laser. Besides, the coupling efficiency of laser energy to energetic electrons for RH-CP laser is much higher than that for LH-CP laser and without external magnetic field. Furthermore, detailed simulation results perform an enhancement of the incident laser absorption with increasing external magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call