Abstract

Transition metal oxide based electrocatalysts (ECs) with mixed valence state have gained considerable attention in recent times. Herein, Co3O4–CuO/Cu2O/C nanostructure with mixed valence oxides is reported as an efficient bi-functional EC towards oxygen electrode reactions in alkaline medium. The EC displays higher current density of 6.2 mA cm−2 and mass activity of 12.9 mA mg−1 compared to that of commercially available Pt/C in 0.1 M KOH solution for oxygen reduction reaction (ORR). Rotating disk electrode measurements are used to understand the kinetics of the reaction and the EC is durable up to 1000 redox cycles. The material is highly stable up to 7000 s by retaining 99% of its initial current. The fast electron transfer is established by the smaller Tafel slope value of 83.6 mV dec−1. In addition, the prepared material is also active for oxygen evolution reaction (OER) in 0.1 M KOH solution. Thus, the nanostructure with different bimetallic active sites is found to be a potential material for oxygen electrocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.