Abstract
Electrically detected magnetic resonance (EDMR) is a promising method to readout spins in miniaturized devices utilized as quantum magnetometers. However, the sensitivity has remained challenging. In this study, we present a tandem (de-)modulation technique based on a combination of magnetic field and radio frequency modulation. By enabling higher demodulation frequencies to avoid 1/f-noise, enhancing self-calibration capabilities, and eliminating background signals by 3 orders of magnitude, this technique represents a significant advancement in the field of EDMR-based sensors. This novel approach paves the way for EDMR being the ideal candidate for ultra-sensitive magnetometry at ambient conditions without any optical components, which brings it one step closer to a chip-based quantum sensor for future applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.