Abstract
The gate-controllable electronical property of graphene provides a possibility of active tuning property for THz modulator. However, the common modulation technology which only depends on voltage cannot solve the problem of power consumption limitation in communication applications. Here, we demonstrated a Brewster angle-controlled graphene-based THz modulator, which could achieve a relatively high modulation depth with low voltage. First, we explored the complex relationships among the Brewster angles, reflection coefficients and the conductivities of graphene. Then, we further investigated the optimal incident angle selection based on the unusual reflection effect which occurs at Brewster angle. Finally, an improved scheme by dynamically adjusting the incident angle was proposed in this paper. It would make it possible that the modulator could achieve a modulation depth of more than 90% with a Fermi level as low as 0.2eV at any specific frequency in the range of 0.4THz-2.2THz. This research will help to realize a THz modulator with high-performance and ultra-low-power in quantities of applications, such as sensing and communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.