Abstract

BackgroundPolymyxin E is widely recognized as a last resort for treating multidrug-resistant gram-negative bacteria. Unfortunately, the effectiveness of polymyxin E is significantly reduced when treating life-threatening bacterial infections due to plasmid-mediated polymyxin E resistance. The synergistic effect of applying a polymyxin E adjuvant is a promising strategy for overcoming the growing threat of antibiotic-resistant pathogens. PurposeTo evaluate the synergistic effect of fisetin and polymyxin E on S. typhimurium infections in vivo and further elucidate the underlying mechanism of this effect. MethodsThe effect of combining fisetin and polymyxin E to treat mobilized colistin resistance-1-positive (MCR-1-positive) gram-negative bacteria in vitro was examined using various methods, such as checkerboard assays, growth curves and time‒kill curves. To elucidate the mechanism by which fisetin affects MCR-1, we employed ultraviolet (UV) absorption spectroscopy, thin layer chromatography (TLC), and western blot analysis to investigate its effect at the protein level. Subsequently, molecular dynamics simulations (MDS) and metabolomics analysis were utilized to determine the site of interaction between fisetin and MCR-1 as well as the potential pathways and mechanisms involved. A new nanoemulsion of fisetin was produced using high-pressure homogenization, and its stability was tested. Finally, two animal models of S. typhimurium HYM2 infection were established to evaluate the synergistic effect of polymyxin E and fisetin in vivo. ResultsOur study revealed that fisetin exhibited a synergistic effect when combined with polymyxin E against MCR-1-positive S. typhimurium. The TLC results demonstrated that fisetin could inhibit the phosphoethanolamine (PEA) transfer of the MCR-1 protein, thereby restoring the activity of polymyxin E in strains against MCR-1. The MDS analysis indicated robust and immediate binding between fisetin and the MCR-1 protein, with both hydrophobic and polar effects playing significant roles in determining the binding energy of the former. Metabolomic studies demonstrated that the addition of fisetin significantly modulated bacterial metabolites. Moreover, it effectively inhibited the activity of ABC transporters in bacteria, thereby mitigating bacterial drug resistance and enhancing the therapeutic efficacy of polymyxin E. Furthermore, in mouse and chick models of infection, intragastric administration of the fisetin nanoemulsion together with polymyxin E resulted in significant therapeutic benefits, including increased survival rates, reduced bacterial colonization, and decreased levels of inflammatory factors. ConclusionFisetin, an MCR-1 inhibitor and a promising synergistic partner of polymyxin E, has significant potential for clinical application in the treatment of S. typhimurium infections, particularly those resulting extensively from drug-resistant MCR-1-positive strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.