Abstract

Mefenamic acid, based on the Biopharmaceutics Classification System (BCS), is a class II drug that has high permeability but low water solubility. To improve its intrinsic dissolution rate, it is usually combined with a hydrophilic and porous drug carrier like Avicel to create a solid dispersion. This study aimed to enhance the intrinsic dissolution rate of mefenamic acid using a solid dispersion with Avicel PH-101. The test of intrinsic dissolution rate involved a rotational speed of 60 rpm and CO 2 -free water with a temperature of 37°C as a medium. The interaction of mefenamic acid and Avicel PH-101 was analyzed with FTIR and DSC spectroscopy. The test results showed that the intrinsic dissolution rates (in mg.cm -2 .minute -1 ) of three replications of mefenamic acid, Solid Dispersion of Mefenamic Acid and Avicel PH-101 (SDMA) with 1:1 ratio, SDMA with 1:2 ratio, Physical Mixture of Mefenamic Acid and Avicel PH-101 (PMMA) with 1:1 ratio, and PMMA with 1:2 ratio were (8.0x10 -4 ± 3.0x10 -4 ), (38.0x10 -4 ± 3.0x10 -4 ), (67.0x10 -4 ± 10.0x10 -4 ), (20.0x10 -4 ± 6.0x10 -4 ), and (44.0x10 -4 ± 14.0x10 -4 ), respectively. The interaction between mefenamic acid and Avicel PH-101 created a hydrogen bonding, as evidenced by the shift in the peaks of FTIR spectra. Based on the DSC thermogram, the mefenamic acid-Avicel PH-101 interaction shifted the steep peak on the curve of mefenamic acid slightly. Avicel PH-101 in this solid dispersion can increase the intrinsic dissolution rate of mefenamic acid through hydrogen bonding instead of decreasing its crystalline structure into an amorphous from.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call