Abstract

In this study, solid/oil/water (S/O/W) emulsions were prepared by sodium caseinate (NaCas) and Xanthan gum (XG) binary composite to improve the dispersion stability of calcium carbonate (CaCO3) and achieve a targeted slow-release effect. CaCO3 S/O/W emulsions were determined by particle size, Zeta potential, physical stability, and microstructure. X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR) were used to characterize the molecular interactions among components. Molecular docking technology was used to predict the possible binding mode between NaCas-XG. The percentage of free Ca2+ released in the gastrointestinal tract (GIT) model was also studied. It was found that when the concentration of XG was 0.5 wt% and pH was 7, the particle size was smaller, the distribution was uniform, and the physical stability was improved. The microstructure results showed that the embedding effect of S/O/W emulsions was better, the particle size distribution was more uniform when XG concentration increased and formed a filament-like connector with a relatively more stereoscopic structure. XRD results confirmed that the CaCO3 was partially covered due to physical embedding. Infrared and Raman analysis and molecular docking results showed electrostatic and hydrophobic interaction between NaCas and XG. In the GIT digestion model, S/O/W emulsion released Ca2+ slowly in the gastric digestion stage, which proved the targeted slow-release effect of the S/O/W emulsions delivery vector. The results showed that the S/O/W emulsions delivery system is an effective way to promote the application of CaCO3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.