Graphene has attracted attention because of its interesting properties in catalyst applications including as a catalyst support; however, it is known that the graphene can be restacked, forming a graphite-like structure that leads to poor specific surface area. Hence, the high-porosity graphene aerogel was used as a Cu–Ni catalyst support to produce dimethyl carbonate (DMC) from carbon dioxide and methanol. In this work, we have introduced a new synthesis route, which can improve the dispersion of metal particles on the graphene aerogel support. Cu–Ni/graphene aerogel catalysts were synthesized by a two-step procedure: forming Cu–Ni/graphene aerogel catalysts via hydrothermal reduction and then Cu–Ni loading by incipient wetness impregnation. It is found that the catalyst prepared by the two-step procedure exhibits higher DMC yield (25%) and MeOH conversion (18.5%) than those of Cu–Ni loading only by an incipient wetness impregnation method. The results prove that this new synthesis route can improve the performance of Cu–Ni/graphene aerogel catalysts for DMC production.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call