Abstract

A novel strategy of enhancing the dielectric and energy storage properties of Na 0.5 Bi 0.5 TiO 3 –BaTiO 3 (NBT–BT) ceramics by introducing a K 0.5 Na 0.5 NbO 3 (KNN) ferroelectric phase is proposed herein, and its underlying mechanism is elucidated. The lead-free KNN ceramic decreases the residual polarisation and increases the electric breakdown strength of the NBT–BT matrix through the simultaneous modification of its A-sites and B-sites. The obtained NBT−BT− x −KNN ceramics have a perovskite structure with unifying grains. A bulk 0.9NBT–BT–0.1KNN ceramic sample with a thickness of 0.2 mm possesses a high energy storage density of 2.81 J/cm 3 at an applied electric field of 180 kV/cm. Moreover, it exhibits good insulation properties and undergoes rapid charge and discharge processes. Therefore, the obtained 0.9NBT–BT–0.1KNN ceramic can be potentially used in high-power applications because of its high energy density, good insulation properties, and large discharge rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.