Abstract

In this work, a reducing/chelating agent, ascorbic acid (H2A) was introduced to the traditional zero-valent iron (Fe0)/persulfate (PS) process for waste activated sludge dewatering. The experimental data indicated that H2A-Fe0/PS process significantly enhanced the dewatering performance of sludge and enhanced the oxidation efficiency of Fe0-PS treatment. Under optimal conditions, the capillary suction time ratio before and after treatment (CST0/CST) of H2A-Fe0/PS treated sludge increased by 118% and 31.3% compared with untreated sludge and Fe0-PS treated sludge, respectively. The mechanism investigations revealed that the H2A-Fe0/PS induced excellent enhancement for sludge dewaterability could be credited to the reduction and chelating capacity of ascorbic acid. Free radicals including SO4•-, O2•- and •OH produced in the H2A-Fe0/PS process destroyed proteinaceous components and humic substances in sludge extracellular polymeric substances (EPS), thus reducing the negative charge and water holding capacity of sludge, improving the sludge rheological properties. As a result, the dewatering performance of sludge has been significantly improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.