Abstract

In recent years, biological nanomedicine-based biomaterials have an extreme attention for biomedical uses, herein we examined a novel kind advance of photoluminescent Graphene quandum dots encapsulated mesoporous nanoparticles (GND@MSNs) encapsulated by well-known anticancer drugs Doxorubicin (DOX) and Cyclosporin (CsA) for lung carcinoma. Electron microscopic technique exhibit the nanostructure and spherical morphology of GND@MSNs+DOX+CsA with mean size ≈110 nm. Moreover, Dynamic Light Scattering (DLS) exposed that blended GND@MSNs+DOX+CsA nanoparticles were highly stable with extremely negatively charged nanoparticles. Raman investigation was done on the all naturally dynamic nanoparticles containing shed graphene to survey the blend condition of the graphene inside the silica mesoporous nanoparticles. GND@MSNs+DOX+CsA provided an outstanding anti-cancer efficiency against the lung cancer cell lines (i.e., A549 and HEL-299). MTT assay monitored that GND@MSNs, GND@MSNs+DOX and GND@MSNs+DOX+CsA have a robust toxicity behaviour on the A549 and HEL-299 model lung cancer cell lines. Additionally, investigation of the cell death was found on AO-EB, Hoechst 33452 staining and flowcytometry techniques. Furthermore, the DNA damage were confirmed by cell cycle arrest and comet assay. Hence, we suggesting that these GND@MSNs+DOX+CsA could be applied as auspicious drug vesicles for novel lung cancer therapeutic potential and new openings to solve the complexity of lung cancer in the care of cancer patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call