Abstract

Tumor recurrence commonly results from tumor-positive resection margins and metastatic lesions. The complete removal of tumor-positive margins is particularly essential in clinics. Thus, we designed a strategy based on Escherichia coli Nissle 1917 (EcN) nitroreductase (NTR) with a polyethylene glycol (PEG) polymer coating (PC-EcN-NTR) to specifically target and colonize in tumors for high-contrast tumor imaging by providing a large amount of NTR as biomarkers in situ. NTR is a favorable biomarker for tumor detection and imaging. The nfsB-encoding plasmid with a 16S promoter was transfected into EcN for the continuous and stable expression of NTR (E. coli. NfsB). PC-EcN-NTR can accumulate and proliferate for a long time in tumors to substantially express NTR. When the NTR-activated fluorescence (FL) probe was sprayed on the tumor, the tumor region showed fluorescence signals within 5 min. Compared to the tumor without colonization with bacteria, the PC-EcN-NTR-colonized tumors displayed 3.15× enhanced fluorescence signals. Furthermore, the fluorescence signals of the whole tumor can last at least 3 h, which is suitable for a long and meticulous surgical operation. More importantly, in the PC-EcN-NTR-harboring tumor, obvious FL appeared even at the very edge (approximately 200 μm away from the edge) of the tumor tissue. A TCF-Based near-infrared-II fluorescent probe (probe 2) was designed and synthesized. Results similar to those of probe 1 were observed when probe 2 was used for in vivo tumor imaging, which further proved the generality of the enhancing ability of the tumor-targeting probiotic. This strategy will hopefully guide the surgical resection of tumors via monitoring intense NTR activity. It may spur the use of tumor-targeting probiotic and enzyme-activated fluorescent probes for the processes of tumor diagnosis and image-guided surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call