Abstract
Multilayer plastic (MP) commonly used in food and beverage packaging is difficult to recycle due to its layered structure, resulting in its accumulation over time; the consequent environmental harm is further exacerbated by its short lifespan. This study investigates recycled low-value MP as a modifier for polymer-modified bitumen (PMB). However, the difference in polarity between MP and PMB mixtures is a challenge, resulting in their poor compatibility and reduced mechanical properties. To overcome this, low-value MP was treated with atmospheric cold plasma and thermal oxidation to enhance its compatibility with PMB. The results indicate that plasma and thermal treatments increase the hydrophilicity of low-value MP through the formation of low-molecular-weight oxidized molecules containing hydrophilic hydroxyl (–OH) and carbonyl (C = O) groups that act as an intermediary boundary layer between the low-value MP and asphaltene-rich bitumen. Further, the optimal oxidation conditions for MP are revealed as 60 s of plasma treatment followed by heating at 150 °C for 60 min. Mixtures of PMB and optimally oxidized MP have optimal compositions of 1 wt.%, with ductility and penetration values of 87.7 cm and 57.4 mm, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced Manufacturing: Polymer & Composites Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.