Abstract

Solid-state NMR of quadrupolar nuclei with half-integer spin, such as 25Mg (I=5/2) or 43Ca (I=7/2), suffers from low sensitivity, which may be improved using spin population transfer (SPT) from the satellite transitions. Effecting SPT with good efficiency is especially challenging under static conditions, and several techniques such as double-frequency sweeps (DFS), hyperbolic secant pulses (HS) and frequency-swept fast-amplitude modulated pulses (SW-FAM) have been suggested for achieving the necessary manipulations of the satellite transitions. We here investigate the SPT properties of an SW-FAM sequence with a tangent-shaped profile. The new SW(tan)-FAM pulse train is shown to possess superior SPT performance to the SW(1/τ)-FAM sequence, which hitherto has been considered to be the best FAM method for signal enhancement of static spectra, by both numerical simulations on a 27Al model system, and experimental results on aluminium acetyl acetonate, Al(acac)3. In addition, the CT enhancement of individual crystallites from the polycrystalline sample with a defined angle between principal z-axis of the diagonal Q-tensor and the external field was considered by numerical simulations. In the vicinity of the magic angle θm=54.7°, a region of zero enhancement exists. Use of the SW(tan)-FAM sequence allows extending the frequency sweep further into this region, with beneficial effects for the overall enhancement and the faithfulness of the line shape. In agreement with previously published studies, our numerical simulations on SPT for single crystals again evidence that the enhancement factors for a polycrystalline sample range from zero enhancement to the maximum gain of 2I, with the total enhancement factor of the full powder pattern being the summation of these strongly varying individual factors. This variation is the cause for line shape distortions in SPT-enhanced spectra. At the same time, these findings prove the capability of frequency sweeps (i.e., DFS and SW-FAM) to fully invert the satellite transitions under certain conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.