Abstract

Electron-transporting (n-type) conjugated polymers have recently been applied in numerous electrochemical applications, where both ion and electron transport are required. Despite continuous efforts to improve their performance and stability, n-type conjugated polymers with mixed conduction still lag behind their hole-transporting (p-type) counterparts, limiting the functions of electrochemical devices. In this work, we investigate the effect of enhanced backbone coplanarity on the electrochemical activity and mixed ionic-electronic conduction properties of n-type polymers during operation in aqueous media. Through substitution of the widely employed electron-deficient naphthalene diimide (NDI) unit for the core-extended naphthodithiophene diimide (NDTI) units, the resulting polymer shows a more planar backbone with closer packing, leading to an increase in the electron mobility in organic electrochemical transistors (OECTs) by more than two orders of magnitude. The NDTI-based polymer shows a deep-lying lowest unoccupied molecular orbital level, enabling operation of the OECT closer to 0 V vs Ag/AgCl, where fewer parasitic reactions with molecular oxygen occur. Enhancing the backbone coplanarity also leads to a lower affinity toward water uptake during cycling, resulting in improved stability during continuous electrochemical charging and ON–OFF switching relative to the NDI derivative. Furthermore, the NDTI-based polymer also demonstrates near-perfect shelf-life stability over a month-long test, exhibiting a negligible decrease in both the maximum on-current and transconductance. Our results highlight the importance of polymer backbone design for developing stable, high-performing n-type materials with mixed ionic-electronic conduction in aqueous media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call